Abstract

We studied the effects of acute smoke exposure on lung permeability, eicosanoids, and inflammatory cell activity. Thirty-five New Zealand white rabbits were anesthetized, paralyzed, and exposed to 60 tidal volume breaths of diesel fuel-polycarbonate plastic smoke or sham smoke within 10 min. At 1 h postexposure the rabbits were killed and their lungs were removed for bronchoalveolar lavage (BAL) or pathologic procedures. Smoke exposure caused decreases in technetium-labeled diethylenetriamine pentaacetate (99mTcDTPA, mol. wt. 492 Da) biological half-life (t1/2), BAL plasminogen activator, and BAL leukotriene B4 (LTB4). In addition, alveolar macrophage acid phosphatase enzyme activity increased in smoke-exposed rabbits. The leukotriene synthesis inhibitor, piriprost (U-60,257), given before smoke exposure, caused attenuation of the changes in 99mTcDTPA uptake and plasminogen activator, swelling of type I alveolar cell epithelium, a large increase in lung inflammatory cells, and decreases in BAL LTB4, prostaglandin E2 (PGE2), and TxB2 (stable metabolite of thromboxane, TxA2). We conclude that changes in alveolar-capillary barrier permeability and plasminogen activator activity occur within 1 h after exposure to smoke and may play an early role in the inflammatory process associated with smoke inhalation injury. Furthermore, piriprost attenuates the smoke-induced increase in alveolar-capillary barrier permeability and decrease in plasminogen activator activity and causes a swelling of type I alveolar epithelium. However, our data suggest that neither lung eicosanoids or the alveolar macrophage lysis process plays a major role in the smoke-induced increase in alveolar-capillary barrier permeability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.