Abstract

Pulmonary vascular endothelial dysfunction is a key pathogenic mechanism in acute respiratory distress syndrome (ARDS), resulting in fibrosis in lung tissues, including in the context of COVID-19. Pirfenidone (PFD) has become a novel therapeutic agent for treating idiopathic pulmonary fibrosis (IPF) and can improve lung function, inhibit fibrosis and inhibit inflammation. Recently, endothelial-to-mesenchymal transition (EndMT) was shown to play a crucial role in various respiratory diseases. However, the role of PFD in the course of EndMT in LPS-induced ARDS remains poorly understood. The purpose of this study was to explore the anti-EndMT effects of PFD on pulmonary fibrosis after LPS-induced ARDS. First, we determined that PFD significantly reduced LPS-induced ARDS, as shown by significant pathological alterations, and alleviated the oxidative stress and inflammatory response in vitro and in vivo. Furthermore, PFD decreased pulmonary fibrosis in LPS-induced ARDS by inhibiting EndMT and reduced the expression levels of Hedgehog (HH) pathway target genes, such as Gli1 and α-SMA, after LPS induction. In summary, this study confirmed that inhibiting the HH pathway by PFD could decrease pulmonary fibrosis by downregulating EndMT in LPS-induced ARDS. In conclusion, we demonstrate that PFD is a promising agent to attenuate pulmonary fibrosis following ARDS in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.