Abstract

The occurrence of gastritis, gastric ulcers, distal gastric cancer, and gastric mucosal lymphoma in humans is strongly associated with Helicobacter pylori (H. pylori). Vaccination is an effective preventive measure due to the increasing prevalence of antibiotic resistance. Fusion vaccination is a potentially practical approach. A fusion vaccine was created in this study by combining the cholera toxin B subunit (CTB) with the antigenic H. pylori urease I subunit (CTB-UreI). The CTB-UreI DNA vaccine was chemically cloned into pIRES2-EGFP, and the success of the cloning was validated using PCR and restriction enzyme digestion. An investigation was conducted on the induction of CTB-UreI in Escherichia coli BL21(DE3). The immunogenicity and immune-protective efficacy of the vaccination were assessed in BALB/c mice. The Western blot assay successfully identified the activation of CTB-UreI.In comparison, BALB/c mice receiving pIRES2-EGFP/CTB-UreI vaccination exhibited higher IgG, IgA, IFN-γ, IL-4, and IL-17 levels in their blood samples. In addition, there was a decrease in stomach injuries and bacterial loads. Furthermore, BALB/c mice inoculated with pIRES2-EGFP/CTB-UreI showed a high level of immunity (100%) against the H. pylori challenge. The pIRES2-EGFP/CTB-UreI elicited a combination of Th1/Th2/Th17 immune responses, possibly contributing to an effective defence mechanism. Our data suggests that using this fusion vaccine to prevent H. pylori infection is a promising option.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call