Abstract

Many multi-core processors employ a large last-level cache (LLC) shared among the multiple cores. Past research has demonstrated that sharing-oblivious cache management policies (e.g., LRU) can lead to poor performance and fairness when the multiple cores compete for the limited LLC capacity. Different memory access patterns can cause cache contention in different ways, and various techniques have been proposed to target some of these behaviors. In this work, we propose a new cache management approach that combines dynamic insertion and promotion policies to provide the benefits of cache partitioning, adaptive insertion, and capacity stealing all with a single mechanism. By handling multiple types of memory behaviors, our proposed technique outperforms techniques that target only either capacity partitioning or adaptive insertion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.