Abstract
The Canadian Nuclear Safety Commission (CNSC) required as part of the operating license for Ontario Power Generation’s Darlington Nuclear Generating Station, that the structural integrity of the piping following a loss of coolant accident (LOCA) be demonstrated. This is necessary to ensure that no subsequent pressure boundary failures will impede the ability to maintain fuel cooling. The injection of cold emergency coolant following a LOCA creates the potential for the occurrence of condensation-induced water hammers (CIWH) in the primary heat transport (PHT) system piping. Classical linear elastic piping analysis using the class 1 NB-3656 rules of the ASME Boiler & Pressure Vessel Code failed to demonstrate the adequacy of the piping and/or its supports that were designed using the linear elastic rules of subsection NF for nine of the twelve piping models that comprise the PHT system. A decision was made to undertake a state-of-the-art non-linear explicit analysis in order to qualify the piping. Strain rather than stress limits would be applied similar to those being developed by ASME for nuclear packaging undergoing accidental impact during transportation. In order to address the feasibility of this approach, a non-linear analysis was performed on a portion of one of the piping systems. The piping was modeled as shells and again as beam elements with and without detailed modeling of the supports. After these initial simulations, it was determined that the piping could be modeled with simplified beam elements, however, the supports would require a more detailed modeling in order to determine the extent of support damage and the effect the supports have on the integrity of the piping system itself. This paper addresses the non-linear modeling of the piping models and discusses the modeling details, assumptions and analysis results. This approach is shown to be a useful alternative for predicting the extent of structural damage that can be expected by a Level D event such as a condensation induced water hammer following a loss of coolant accident.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.