Abstract

Insect pest chitinases are potential target for developing new insect growth regulators. Piperine was found first to inhibit the insect chitinase (OfChi-h) from Ostrinia furnacalis (Asian corn borer) in this work, except for previously reported OfChtI. Novel piperonyl-tethered rhodanine derivatives 7a-j were rationally designed with piperine as lead and synthesized by introducing a unique rhodanine moiety into the piperine scaffold based on the similar binding cavity of OfChtI and OfChi-h. Compared to piperine, compounds 7a-j showed approximately 100- to 400-fold or 110- to 210-fold higher inhibitory capacity against two chitinases, respectively. Molecular mechanism studies indicated that π interactions are crucial for improving inhibitory activity against two chitinases due to the introduction of the conjugated rhodanine ring. Moreover, compounds 7a-c could dramatically inhibit the growth and development of O. furnacalis larvae by in vivo activity evaluation. This study provides novel piperonyl-tethered rhodanine derivatives inhibiting dual chitinases as insect growth regulator candidates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.