Abstract

Protein fibrillation has been shown as a crucial process in the onset of several neurodegenerative and retinal disorders due to the formation of cytotoxic species. Because of their capacity to prevent protein aggregation, small molecules have the potential to be therapeutic agents. Here, we examined the inhibitory impacts of the piperonal as a carbaldehyde-derived compound on the fibrillation process of α-synuclein and underlying cytotoxicity against neuron-like (PC12) and human retinal pigment epithelial (RPE) (ARPE-19) cells. The results showed that the values of kapp and lag time of α-synuclein were modulated with piperonal. Moreover, ANS fluorescence intensity analysis indicated that piperonal can inhibit the formation of a molten global (misfolded) state of α-synuclein, which is a necessary step in the formation of protein amyloid fibrils. Congo red absorption and circular dichroism spectroscopy also verified the inhibition of β-sheet structure formation after treatment of α-synuclein with piperonal. Furthermore, theoretical studies indicated that piperonal interacts with VAL40:HN, GLU35:O, VAL40, and LYS43 amino acid residues and forms a complex. In addition, cytotoxicity assays demonstrated that piperonal as a safe small molecule could mitigate the induced cytotoxicity by α-synuclein amyloids in PC12 and ARPE-19 cells through reduction of ROS and Bax/Bcl2 mRNA overexpression. Taken together, these outcomes showed that piperonal as a natural aldehyde compound can inhibit α-synuclein fibrillation and underlying cytotoxicity which may be developed for potential therapeutic applications in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.