Abstract

Several in vivo and in vitro studies reported a favorable effect of piperine (PIP) on vascular function. However, the potential impacts of PIP on macrovasculopathy in streptozotocin (STZ)-diabetic rats have not yet been studied.Thirty-two Sprague Dawley rats were used (n= 8/group). STZ-administered rats (50 mg/kg once, i.p) received PIP (30 mg/kg/day, orally) or its vehicle starting from day 15 till the end of the study (10 weeks). Control groups consisted of age-matched normal rats with or without PIP treatment. Metabolic and oxidative stress parameters were biochemically determined. Aortas were histologically examined. Ex vivo aortic reactivity to phenylephrine and acetylcholine was studied. Components of the TXNIP-NLRP3 pathway were assessed using real-time PCR, ELISA, and immunohistochemistry. Two-way ANOVA was used to compare groups. Statistical significance was set at P < 0.05.PIP treatment of diabetic rats significantly reduced levels of fasting glycemia, HbA1c, and serum AGEs, TGs, TC, and LDL-C compared to control diabetic group. PIP diminished aortic endothelial denudation and fibrous tissue proliferation compared to control STZ aortas. PIP lessened aortic contractility to phenylephrine and improved aortic relaxation to acetylcholine relative to untreated STZ group. PIP administration to diabetic rats elicited significant enhancements in GSH and SOD levels, eNOS expression, and total nitrate/nitrite bioavailability compared to untreated STZ rats. Moreover, PIP attenuated aortic contents of ROS, MDA, TXNIP protein and mRNA, NF-κB p65 mRNA, NLRP3 mRNA, IL-1β protein, and caspase-3 and TNF-α expressions compared to untreated STZ levels.In conclusion, PIP might ameliorate diabetes-associated functional and structural aortic remodeling by targeting TXNIP-NLRP3 signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call