Abstract

Piperine, one of the main components of Piper longum Linn. and P. nigrum Linn., is a plant alkaloid with a long history of medicinal use. Piperine has been shown to modulate the immune response, but the mechanism underlying this modulation remains unknown. Here, we examined the effects of piperine on lipopolysaccharide (LPS)-induced inflammatory responses in bone-marrow-derived dendritic cells (BMDCs). Piperine significantly inhibited the expression of major histocompatibility complex class II, CD40 and CD86 in BMDCs in a dose-dependent manner. Furthermore, piperine treatment led to an increase in fluorescein-isothiocyanate-dextran uptake in LPS-treated dendritic cells and inhibited the production of tumour necrosis factor alpha and interleukin (IL)-12, but not IL-6. The inhibitory effects of piperine were mediated via suppression of extracellular signal-regulated kinases and c-Jun N-terminal kinases activation, but not p38 or nuclear factor-κB activation. These findings provide insight into the immunopharmacological role of piperine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.