Abstract

Piperine (PIP), a pungent alkaloid found in black pepper, has various pharmacological effects by activating the transient receptor potential vanilloid 1 (TRPV1) receptor. In this study, the regulating effect of PIP on glucose metabolism and the underlying mechanism were examined using an insulin-resistant cell model. Results showed that PIP alleviated glucosamine (GlcN)-induced glucose metabolism disorder (from 59.19 ± 1.90 to 88.36 ± 6.57%), restored cellular redox balance (from 148.43 ± 3.52 to 110.47 ± 3.52%), improved mitochondrial function (from 63.76 ± 4.87 to 85.98 ± 5.12%), and mitigated circadian disruption in HepG2 cells via the mediation of circadian clock gene Bmal1. After the knockdown of the Trpv1 gene, the modulating effect of PIP on Bmal1-mediated glucose metabolism was weakened, indicating that PIP alleviated Bmal1-involved insulin resistance and circadian misalignment in a Trpv1-dependent manner in HepG2 cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.