Abstract

Intracellular protein delivery has been a major challenge due to various physiological barriers including low proteolytic stability and poor membrane permeability of the biologics. Nanoparticles were widely proposed to deliver cargo proteins into cells by endocytosis, however, the materials and complexes with proteins are often entrapped in endosomes and subject to lysosome degradation. In this study, we report a piperazine modified dendrimer for stabilizing the complexes via a combination of electrostatic interaction and hydrophobic interactions. The complexes show rapid cell internalization and the loaded proteins are released into the cytosols as early as half an hour post incubation. Mechanism study suggests that the complexes are endocytosed into cells via caveolae-based pathways, which could be inhibited by inhibitors such as genistein, filipin III, brefeldin A and nystatin. The phenylpiperazine-modified polymer enables the delivery of cargo proteins with reserved bioactivity and show high permeability in three-dimensional cell spheroids. The results prove the beneficial roles of phenylpiperazine ligands in polymer-mediated cytosolic protein delivery systems. STATEMENT OF SIGNIFICANCE: We synthesized a list of piperazine and derivatives modified dendrimers as cytosolic protein delivery vectors via facile reactions. Phenylpiperazine modification enables the efficient protein binding through the combination of electrostatic, hydrogen bonding and hydrophobic interactions. Phenylpiperazine modified dendrimers were internalized into the cells via a caveolae-based endo/lysosome-independent path and could release the cargo proteins into the cytosols as early as half an hour post incubation. Phenylpiperazine modified dendrimers delivered cargo proteins with reserved bioactivity and showed high permeability in three-dimensional cell spheroids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.