Abstract
Database systems frequently have to execute a set of related queries, which share several common subexpressions. Multi-query optimization exploits this, by finding evaluation plans that share common results. Current approaches to multi-query optimization assume that common subexpressions are materialized. Significant performance benefits can be had if common subexpressions are pipelined to their uses, without being materialized. However, plans with pipelining may not always be realizable with limited buffer space, as we show. We present a general model for schedules with pipelining, and present a necessary and sufficient condition for determining validity of a schedule under our model. We show that finding a valid schedule with minimum cost is NP-hard. We present a greedy heuristic for finding good schedules. Finally, we present a performance study that shows the benefit of our algorithms on batches of queries from the TPCD benchmark.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.