Abstract
Identification of high consequence areas is an important task in pipeline integrity management. However, traditional identification methods are generally characterized by low efficiency, high cost and low accuracy. For this reason, this paper proposes a recognition method based on the improved algorithm Mask Region-based Convolutional Neural Network. Coordinate attention mechanism module is introduced into the traditional Mask R-CNN algorithm to improve the recognition accuracy and reduce the training time. For the identification results, GIS tools are utilized to establish high consequence zones along both sides of the pipeline, and the grade and scope of the high consequence zones are determined according to relevant specifications.In this paper, this method is used to identify the high-consequence area of a pipeline section in Guangdong Province, the results show that: 1, the improved algorithm in the identification of densely populated, geologic hazards, flammable and explosive high consequence zones of the average accuracy of the identification of 1.7%, 3.4%, 3.9%. 2, The method in this paper identifies 8 more building elements and 0.311 more kilometers of pipeline mileage compared to traditional identification methods. The method of this paper can provide a reference for the early identification of high consequence areas of pipelines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.