Abstract

A nonlinear image-based visual servo control approach for pipeline following of fully-actuated Autonomous Underwater Vehicles (AUV) is proposed. It makes use of the binormalized Plücker coordinates of the pipeline borders detected in the image plane as feedback information while the system dynamics are exploited in a cascade manner in the control design. Unlike conventional solutions that consider only the system kinematics, the proposed control scheme accounts for the full system dynamics in order to obtain an enlarged provable stability domain. Control robustness with respect to model uncertainties and external disturbances is reinforced using integral corrections. Robustness and efficiency of the proposed approach are illustrated via both realistic simulations and experimental results on a real AUV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.