Abstract

Sudden pipe bursts occur in high-pressure water transmission pipelines and water distribution networks. The consequences of these bursts can be very expensive due to the outage time while the burst pipe is repaired, the cost of repair, and damage to surrounding property and infrastructure. As a result, it is advantageous to minimise the detection and location time after the burst occurs. This paper presents a continuous monitoring approach for the detection and location of pipeline bursts using pressure transients. Previous research has shown the potential of fluid transients for pipeline assessment. A sudden pipe burst creates a negative pressure wave that travels in both directions away from the burst point and is reflected at the pipe boundaries. Using pressure measured at one location, the timing of the initial and reflected burst-induced waves determines the location of the burst. The continuous monitoring technique uses the two-sided cumulative sum (CUSUM) algorithm to detect abrupt changes in the pressure data caused by the pipe break. The sensitivity of the algorithm is tuned such that the normal system/measurement noise does not initiate a false alarm. The continuous monitoring technique is verified using results from a laboratory pipeline. Different burst and measurement locations are tested. The results are promising for burst detection and location in real systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.