Abstract

Pipe (vessel) phantoms mimicking human tissue and blood flow are widely used for cardiovascular related research in medical ultrasound. Pipe phantom studies require the development of materials and liquids that match the acoustic properties of soft tissue, blood vessel wall, and blood. Over recent years, pipe phantoms have been developed to mimic the molecular properties of the simulated blood vessels. In this paper, the design, construction, and functionalization of pipe phantoms are introduced and validated for applications in molecular imaging and ultrasound imaging system characterization. There are three major types of pipe phantoms introduced: 1) a gelatin-based pipe phantom; 2) a polydimethylsiloxane-based pipe phantom; and 3) the "Edinburgh pipe phantom." These phantoms may be used in the validation and assessment of the dynamics of microbubble-based contrast agents and, in the case of a small diameter tube phantom, for assessing imaging system spatial resolution/contrast performance. The materials and procedures required to address each of the phantoms are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.