Abstract
The molecular functions of several aquaporins are well characterized (e.g., by analysis of aquaporin-expressing Xenopus oocytes). However, their significance in the physiology of water transport in multicellular organisms remains uncertain. The tobacco plasma membrane aquaporin NtAQP1 was used to elucidate this issue. By comparing antisense plants that were inhibited in NtAQP1 expression with control plants, we found evidence for NtAQP1 function in cellular and whole-plant water relations. The consequences of a decrease in cellular water permeability were determined by measurement of transpiration rate and stem and leaf water potential as well as growth experiments under extreme soil water depletion. Plants impaired in NtAQP1 expression showed reduced root hydraulic conductivity and lower water stress resistance. In conclusion, our results emphasize the importance of symplastic aquaporin-mediated water transport in whole-plant water relations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.