Abstract

Plasma membrane isolated from microsomal membranes of pea seedling root and shoot cells by means of aqueous two-phase polymer system was separated by flotation in discontinuous OptiPrep gradient into “light” (≤1.146 g/cm3) and “heavy” (≥1.146 g/cm3) fractions. Osmotic water permeability of plasma membrane and its two fractions was investigated by inducing transmembrane osmotic gradient on the vesicle membrane and recording the kinetics of vesicle osmotic shrinkage by the stopped-flow method. Rate constants of osmotic shrinkage and coefficients of osmotic water permeability of the membranes were estimated on the basis of the kinetic curve approximation by exponential dependencies and using electron microscope data on vesicles sizes. In plasma membrane and its fractions the content of sterols and PIP1 aquaporins was determined. It was found that in “light” PM fractions from both roots and shoots the content of PIP1 aquaporins and sterols was higher and the osmotic water permeability coefficient was lower than in “heavy” fractions of plasma membrane. The results indicate that plasma membrane of roots and shoots is heterogeneous in osmotic water permeability. This heterogeneity may be related with the presence of microdomains with different content of aquaporins and sterols in the membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call