Abstract
Addressing the intertwined challenges of antimicrobial resistance and impaired wound healing in diabetic patients, an oil/water emulsion-based nano-ointment integrating phenylpropanoids-Eugenol and Cinnamaldehyde-with positively-charged silver nanoparticles was synthesized. The process began with the synthesis and characterization of nano-silver, aimed at ensuring the effectiveness and safety of the nanoparticles in biological applications. Subsequent experiments determined the minimum inhibitory concentration (MIC) against pathogens such as Streptococcus aureus, Pseudomonas aeruginosa and Candida albicans. These MIC values of all three active leads guided the strategic formulation of an ointment base, which effectively integrated the bioactive components. Evaluations of this nano-ointment revealed enhanced antimicrobial activity against both clinical and reference bacterial strains and it maintained stability after freeze-thaw cycles. Furthermore, the ointment demonstrated superior in-vitro diabetic wound healing capabilities and significantly promoted angiogenesis, as shown by enhanced blood vessel formation in the Chorioallantoic Membrane assay. These findings underscore the formulation's therapeutic potential, marking a significant advance in the use of nanotechnology for topical wound care.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.