Abstract

AbstractRecent advancements in soft robotics have been emerging as an exciting paradigm in engineering due to their inherent compliance, safe human interaction, and ease of adaptation with wearable electronics. Soft robotic devices have the potential to provide innovative solutions and expand the horizons of possibilities for biomedical applications by bringing robots closer to natural creatures. In this review, we survey several promising soft robot technologies, including flexible fluidic actuators, shape memory alloys, cable‐driven mechanisms, magnetically driven mechanisms, and soft sensors. Selected applications of soft robotic devices as medical devices are discussed, such as surgical intervention, soft implants, rehabilitation and assistive devices, soft robotic exosuits, and prosthetics. We focus on how soft robotics can improve the effectiveness, safety and patient experience for each use case, and highlight current research and clinical challenges, such as biocompatibility, long‐term stability, and durability. Finally, we discuss potential directions and approaches to address these challenges for soft robotic devices to move toward real clinical translations in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call