Abstract
We find a solution to the static Chew-Low theory of pion-nucleon scattering, avoiding the one-meson approximation. Our basic equation is crossing symmetric and may be solved for phase shifts $\ensuremath{\delta}(p)$ by standard numerical techniques, upon specifying a form factor $\ensuremath{\nu}(p)$ and a set of inelasticities. With $\ensuremath{\nu}(p)=\mathrm{exp}(\frac{\ensuremath{-}{p}^{2}}{30})$ we reproduce experimental $\ensuremath{\delta}(p)$ for ${p}_{L}\ensuremath{\le}1.2 \frac{\mathrm{GeV}}{c}$ in the (3,3) state; in the (1,3) states and (3,1) states $\ensuremath{\delta}(p)$ compare well on the average but in the (1,1) state $\ensuremath{\delta}(p)$ have opposite signs. We show the importance of crossing symmetry and the coupling to inelastic channels, and we discuss the possibility of determining $\ensuremath{\nu}(p)$ directly from elastic scattering by an inverse scattering formula.[NUCLEAR REACTIONS Pion-nucleon elastic scattering; Chew-Low theory, pion nucleon form factor, crossing symmetry, coupling to inelastic channels, inverse scattering problem.]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physical Review C
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.