Abstract

Pion condensation has not previously been investigated in a theory that accounts for the known bulk properties of nuclear matter, its saturation energy and density and compressibility. We have formulated and solved self-consistently, in the mean field approximation, a relativistic field theory that possesses a condensate solution and reproduces the correct bulk properties of nuclear matter. The theory is solved in its relativistically covariant form for a general class of space-time dependent pion condensates. Self-consistency and compatibility with bulk properties of nuclear matter turn out to be very stringent conditions on the existence and energy of the condensate, but they do allow a weak condensate energy to develop. The spin-isospin density oscillations, on the other hand, can be large. It is encouraging, as concerns the possible existence of new phases of nuclear matter, that this is so, unlike the Lee-Wick density isomer, that appears to be incompatible with nuclear matter properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call