Abstract

Nutrient overload leads to obesity and insulin resistance. Pioglitazone, a selective peroxisome proliferator-activated receptor (PPAR)gamma agonist, is currently used to manage insulin resistance, but the specific molecular mechanisms activated by PPARgamma are not yet fully understood. Recent studies suggest the involvement of suppressor of cytokine signalling (SOCS)-3 in the pathogenesis of insulin resistance. This study aimed to investigate the hepatic signalling pathway activated by PPARgamma activation in a non-genetic insulin-resistant animal model. Male Wistar rats were maintained on a high-cholesterol fructose (HCF) diet for 15 weeks. Pioglitazone (3 mg x kg(-1)) was administered orally for the last 4 weeks of this diet. At the end of the treatment, serum was collected for biochemical analysis. Levels of PPARgamma, SOCS-3, pro-inflammatory markers, insulin receptor substrate-2 and Akt/glycogen synthase kinase-3beta phosphorylation were assessed in rat liver. Rats fed the HCF diet exhibited hyperlipidemia, hyperinsulinemia, impaired glucose tolerance and insulin resistance. Pioglitazone administration evoked a significant improvement in lipid metabolism and insulin responsiveness. This was accompanied by reduced hepatic expression of SOCS-3, interleukin-6, tumour necrosis factor-alpha and markers of neutrophil infiltration. Diet-induced PPARgamma expression was unaffected by the pioglitazone treatment. Chronic pioglitazone administration reduced hepatic inflammatory responses in rats fed a HCF diet. These effects were associated with changes in hepatic expression of SOCS-3, which may be a crucial link between the reduced local inflammation and the improved insulin signalling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call