Abstract

This study is aimed to investigate the effect of pinoresinol diglucoside (PDG) in ameliorating myocardial ischemia-reperfusion injury (MIRI).Hypoxia/reperfusion (H/R)-induced H9c2 cardiomyocytes were used to establish an in-vitro ischemia-reperfusion injury model of cardiomyocytes. Cells were treated with 1 μmol/L of PDG. Reactive oxygen species (ROS) level was detected by a 2',7'-dichlorofluorescein-diacetateassay. The release of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) was examined by enzyme-linked immunosorbent assay. The viability and apoptosis of H9c2 cells were probed by MTT assay and flow cytometry. Besides this, Western blot and quantitative real-time PCR were used to detect microRNA-142-3p (miR-142-3p) and hypoxia-inducible factor 1 subunit alpha inhibitor (HIF1AN) expression levels. The binding sequence between miR-142-3p and HIF1AN 3'-untranslated region was validated by a dual-luciferase reporter gene assay.PDG treatment significantly reduced the level of ROS, LDH, and CK-MB, promoted viability, and inhibited the apoptosis of H9c2 cells. PDG treatment promoted miR-142-3p expression and inhibited HIF1AN expression in H9c2 cells. MiR-142-3p overexpression enhanced the effects of PDG on ROS, LDH, CK-MB levels, cell viability, and apoptosis in H9c2 cardiomyocytes, while overexpression of HIF1AN reversed the above effects.PDG ameliorates H/R-induced injury of cardiomyocytes by regulating miR-142-3p and HIF1AN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.