Abstract
This paper investigates adaptive pinning synchronization of a general weighted neural network with coupling delay. Unlike recent works on pinning synchronization which proposed the possibility that synchronization can be reached by controlling only a small fraction of neurons, this paper aims to answer the following question: Which neurons should be controlled to synchronize a neural network? By using Schur complement and Lyapunov function methods, it is proved that under a mild topology-based condition, some simple adaptive feedback controllers are sufficient to globally synchronize a general delayed neural network. Moreover, for a concrete neurobiological network consisting of identical Hindmarsh-Rose neurons, a specific pinning control technique is introduced and some numerical examples are presented to verify our theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.