Abstract
In this paper, the problem of pinning impulsive synchronization for complex dynamical networks with directed or undirected but a strongly connected topology is investigated. To remedy this problem, we propose an efficient algorithm to find certain suitable nodes to be controlled via pinning and these selected nodes, in general, could be different at distinct impulsive time instants. The proposed algorithm guarantees the efficiency of the designed pinning impulsive strategy for the global exponential synchronization of state-coupled dynamical networks under an easily-verified condition. In other words, impulsive controllers and an efficient algorithm are designed to control a small fraction of the nodes, which successfully controls the whole dynamical network. Furthermore, we also estimate the upper bound of the number of pinning nodes, which is shown to be closely related to the impulsive intervals. The relationship implies that the required number of pinning nodes, which should be controlled for the successful control of the whole dynamical network, can be greatly reduced by reducing the impulses interval. Finally, simulations of scale-free and small-world networks are given to illustrate the effectiveness of the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.