Abstract

Neurofibrillary tangles (NFTs) are prominent neuronal lesions in a large subset of neurodegenerative diseases, including Alzheimer's disease (AD). NFTs are mainly composed of insoluble Tau that is hyperphosphorylated on many serine or threonine residues preceding proline (pSer/Thr-Pro). Tau hyperphosphorylation abolishes its biological function to bind microtubules and promotes microtubule assembly and precedes neurodegeneration. Not much is known about how tau is further regulated following phosphorylation. Notably, we have recently shown that phosphorylated Ser/Thr-Pro motifs exist in two distinct conformations. The conversion between two conformations in some proteins is catalyzed by the prolyl isomerase Pin1. Pin1 binds to tau phosphorylated specifically on the Thr231-Pro site and probably catalyzes cis/trans isomerization of pSer/Thr-Pro motif(s), thereby inducing conformational changes in tau. Such conformational changes can directly restore the ability of phosphorylated Tau to bind microtubules and promote microtubule assembly and/or facilitate tau dephosphorylation by its phosphatase PP2A, as PP2A activity is conformation-specific. Furthermore, Pin1 expression inversely correlates with the predicted neuronal vulnerability in normally aged brain and also with actual neurofibrillary degeneration in AD brain. Moreover, deletion of the gene encoding Pin1 in mice causes progressive age-dependent neuropathy characterized by motor and behavioral deficits, tau hyperphosphorylation, tau filament formation and neuronal degeneration. Distinct from all other mouse models where transgenic overexpression of specific proteins elicits tau-related pathologies, Pin1 is the first protein whose depletion causes age-dependent neurodegeneration and tau pathologies. Thus, Pin1 is pivotal in maintaining normal neuronal function and preventing age-dependent neurodegeneration. This could represent a promising interventive target to prevent neurodegenerative diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.