Abstract

Extensions of the Standard Model Higgs sector involving weak isotriplet scalars are not only benchmark candidates to reconcile observed anomalies of the recently discovered Higgs-like particle, but also exhibit a vast parameter space, for which the lightest Higgs' phenomenology turns out to be very similar to the Standard Model one. A generic prediction of this model class is the appearance of exotic doubly charged scalar particles. In this paper we adapt existing dilepton+missing energy+jets measurements in the context of SUSY searches to the dominant decay mode $H^{\pm\pm}\to W^\pm W^\pm$ and find that the LHC already starts probing the model's parameter space. A simple modification towards signatures typical of weak boson fusion searches allows us to formulate even tighter constraints with the 7 TeV LHC data set. A corresponding analysis of this channel performed at 14 TeV center of mass energy will constrain the model over the entire parameter space and facilitate potential $H^{\pm\pm}\to W^\pm W^\pm$ discoveries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call