Abstract

The solutions for the unidirectional flow of a thin rivulet with prescribed volume flux down an inclined planar substrate are used to describe the locally unidirectional flow of a rivulet with constant width (i.e. pinned contact lines) but slowly varying contact angle as well as the possible pinning and subsequent de-pinning of a rivulet with constant contact angle and the possible de-pinning and subsequent re-pinning of a rivulet with constant width as they flow in the azimuthal direction from the top to the bottom of a large horizontal cylinder. Despite being the same locally, the global behaviour of a rivulet with constant width can be very different from that of a rivulet with constant contact angle. In particular, while a rivulet with constant non-zero contact angle can always run from the top to the bottom of the cylinder, the behaviour of a rivulet with constant width depends on the value of the width. Specifically, while a narrow rivulet can run all the way from the top to the bottom of the cylinder, a wide rivulet can run from the top of the cylinder only to a critical azimuthal angle. The scenario in which the hitherto pinned contact lines of the rivulet de-pin at the critical azimuthal angle and the rivulet runs from the critical azimuthal angle to the bottom of the cylinder with zero contact angle but slowly varying width is discussed. The pinning and de-pinning of a rivulet with constant contact angle, and the corresponding situation involving the de-pinning and re-pinning of a rivulet with constant width at a non-zero contact angle which generalises the de-pinning at zero contact angle discussed earlier, are described. In the latter situation, the mass of fluid on the cylinder is found to be a monotonically increasing function of the constant width.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.