Abstract

Considered the stimulation of tumor necrosis factor as an impulsive control, an apoptosis network is modeled as a state-dependent impulsive Boolean network (SDIBN). Making cell death normally means driving the trajectory of an apoptosis network out of states that indicate cell survival. To achieve the goal, this article focuses on the pinning controller design for set reachability of SDIBNs. To begin with, the definitions of reachability and set reachability are introduced, and their relation is illustrated. For judging whether the trajectory of an SDIBN leaves undesirable states, a necessary and sufficient condition is presented according to the criteria for the set reachability. In addition, a series of algorithms is provided to find all possible sets of pinning nodes for the set reachability. Note that attractors containing in all undesirable states are studied to make SDIBNs set reachable via controlling the smallest states. For the purpose of determining pinning nodes for one-step set reachability, the Hamming distance is presented under scalar forms of states. Pinning nodes with the smallest cardinality for the set reachability are derived by deleting some redundant nodes. Compared with the existing results, the state feedback gain can be obtained without solving logical matrix equations. The computation complexity of the proposed approach is lower than that of the existing methods. Moreover, the method of designing pinning controllers is used to discuss apoptosis networks. The experimental result shows that apoptosis networks depart from undesirable states by controlling only one node.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call