Abstract

We studied the dynamics of a quasi-one-dimensional chain-like system of charged particles at low temperature, interacting through a screened Coulomb potential in the presence of a local constriction. The response of the system when an external electric field is applied was investigated. We performed Langevin molecular dynamics simulations for different values of the driving force and for different temperatures. We found that the friction together with the constriction pins the particles up to a critical value of the driving force. The system can depin \emph{elastically} or \emph{quasi-elastically} depending on the strength of the constriction. The elastic (quasi-elastic) depinning is characterized by a critical exponent $\beta\sim0.66$ ($\beta\sim0.95$). The dc conductivity is zero in the pinned regime, it has non-ohmic characteristics after the activation of the motion and then it is constant. Furthermore, the dependence of the conductivity with temperature and strength of the constriction was investigated in detail. We found interesting differences between the single and the multi-chain regimes as the temperature is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.