Abstract

The dynamic consequences of the existence of pinned vort1c1ty in a rotating superfluid are studied by means of a simple model: the behavior of a rotating cylinder which contains a uniform region of either weakly or strongly pinned vorticity and which is being spun up or spun down by an external torque. It is shown that in the case of strong pinning, spin down can lead to periodic jumps (glitches) in the rotation frequency of the cylinder, followed by quasi-oscillatory relaxation, while in the case of weak pinning no glitches occur unless the cylinder is shaken so violently that vortices unpin. We conclude that the giant glitches and post-glitch behavior observed in the Vela pulsar may be explained by the sudden release of some 10% of the strongly pinned vortices in the neutron crust every few years as a result of pulsar spin down. We further suggest that the post-glitch behavior observed in the Crab pulsar can be explained if the macroglitches represent vorticity jumps induced by small starquakes in the weakly pinned vortex region expected in the crust of a young neutron star, and that the differences in glitch be­ havior of the Crab, Vela, and older pul~ars may be explained on evolutionary grounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.