Abstract
Aberrant proliferation of vascular smooth muscle cells (VSMC) is a critical contributor to the pathogenesis of atherosclerosis (AS). Our previous studies have demonstrated that apelin-13/APJ confers a proliferative response in VSMC, however, its underlying mechanism remains elusive. In this study, we aimed to investigate the role of mitophagy in apelin-13-induced VSMC proliferation and atherosclerotic lesions in apolipoprotein E knockout (ApoE-/-) mice. Apelin-13 enhances human aortic VSMC proliferation and proliferative regulator proliferating cell nuclear antigen expression in dose and time-dependent manner, while is abolished by APJ antagonist F13A. We observe the engulfment of damage mitochondria by autophagosomes (mitophagy) of human aortic VSMC in apelin-13 stimulation. Mechanistically, apelin-13 increases p-AMPKα and promotes mitophagic activity such as the LC3I to LC3II ratio, the increase of Beclin-1 level and the decrease of p62 level. Importantly, the expressions of PINK1, Parkin, VDAC1, and Tom20 are induced by apelin-13. Conversely, blockade of APJ by F13A abolishes these stimulatory effects. Human aortic VSMC transfected with AMPKα, PINK1, or Parkin and subjected to apelin-13 impairs mitophagy and prevents proliferation. Additional, apelin-13 not only increases the expression of Drp1 but also reduces the expressions of Mfn1, Mfn2, and OPA1. Remarkably, the mitochondrial division inhibitor-1(Mdivi-1), the pharmacological inhibition of Drp1, attenuates human aortic VSMC proliferation. Treatment of ApoE-/- mice with apelin-13 accelerates atherosclerotic lesions, increases p-AMPKα and mitophagy in aortic wall in vivo. Finally, PINK1-/- mutant mice with apelin-13 attenuates atherosclerotic lesions along with defective in mitophagy. PINK1/Parkin-mediated mitophagy promotes apelin-13-evoked human aortic VSMC proliferation by activating p-AMPKα and exacerbates the progression of atherosclerotic lesions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.