Abstract

Abstract Anthracene can be used as a scaffold for intramolecular SN2 degenerate reactions of the “bell clapper” type, where a central boron atom or its isoelectronic carbocation bonds alternatively towards one or the other lateral Lewis bases at the first and eight anthracene positions. This ping-pong bond-switching reaction possesses a symmetrical double-well potential with low activation barrier and relatively narrow barrier width. Herein we show by computational means the active role played by heavy atom quantum tunneling in this degenerate rearrangement reaction at cryogenic temperatures. At these conditions the thermal “over the barrier” reaction is forbidden, whereas the tunneling effect enhances the rate of reaction up to an experimentally measurable half-life. Kinetic isotope effects and cryogenic NMR spectroscopy can, in principle, experimentally demonstrate the tunneling mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.