Abstract

Abstract Adsorbents that are less expensive and more effective at removing organic micropollutants from wastewater have been developed through several approaches. Pine bark was treated with sodium hydroxide and then cross-linked to cyclodextrin using hexamethylene diisocyanate, in this study as an efficient adsorbent in the removal of 2-nitrophenol. FTIR, TGA and pHpzc analysis were used to characterize the biosorbent. The effects of pH, adsorbent mass, contact time and initial concentration on 2-nitrophenol removal was examined through batch adsorption studies. Pine bark crosslinked to cyclodextrin (PB-CD) surface functionalities was confirmed by FTIR analysis. It was discovered that solution pH, adsorbent mass, concentration and contact time all played a crucial role in the 2-nitrophenol uptake on PB-CD biosorbent and pine bark (PB) treated with sodium hydroxide. 2-Nitrophenol equilibrium was achieved with 0.05 g of adsorbents, with an initial concentration of 100–200 mg/dm3 at pH 5 after 60 min. The pseudo-second-order kinetic model and the Langmuir isotherm model significantly fitted the adsorption process. The Langmuir maximum capacities for PB and PB-CD were 47.36 mg/g and 77.82 mg/g, respectively. Overall, in the removal of 2-nitrophenol from an aqueous solution, PB-CD biosorbent is more cost-effective and efficient, in comparison with previously reported biosorbents in literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.