Abstract
A family of discontinuous symplectic maps arising naturally in the study of nonsmooth switched Hamiltonian systems is considered. This family depends on two parameters and is a canonical model for the study of bounded and unbounded behavior in discontinuous area-preserving transformations due to nonlinear resonances. This paper provides a general description of the map and a construction of nontrivial unbounded solutions for the special case of the pinball transformation. An asymptotic expansion of the pinball map in the limit of large energy is derived and used for the construction of unbounded solutions. For the generic values of the parameters, in the large energy limit, the map behaves similarly to another one considered earlier by Kesten (Acta Arith 1966).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.