Abstract

We compute the $\text{Pin}(2)$-equivariant Seiberg–Witten Floer homology of Seifert rational homology three-spheres in terms of their Heegaard Floer homology. As a result of this computation, we prove Manolescu’s conjecture that $\unicode[STIX]{x1D6FD}=-\bar{\unicode[STIX]{x1D707}}$ for Seifert integral homology three-spheres. We show that the Manolescu invariants $\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},$ and $\unicode[STIX]{x1D6FE}$ give new obstructions to homology cobordisms between Seifert fiber spaces, and that many Seifert homology spheres $\unicode[STIX]{x1D6F4}(a_{1},\ldots ,a_{n})$ are not homology cobordant to any $-\unicode[STIX]{x1D6F4}(b_{1},\ldots ,b_{n})$. We then use the same invariants to give an example of an integral homology sphere not homology cobordant to any Seifert fiber space. We also show that the $\text{Pin}(2)$-equivariant Seiberg–Witten Floer spectrum provides homology cobordism obstructions distinct from $\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},$ and $\unicode[STIX]{x1D6FE}$. In particular, we identify an $\mathbb{F}[U]$-module called connected Seiberg–Witten Floer homology, whose isomorphism class is a homology cobordism invariant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call