Abstract

Cartilage stem/progenitor cells (CSPCs) was recently isolated and identified from the cartilage tissue. CSPCs is essential for repair and regeneration of cartilage in osteoarthritis (OA). Aging is a primary risk factor for cartilage damage and joint OA. Although studies have confirmed the link between cell aging and OA, the underlying molecular mechanisms regulating CSPCs aging are not fully understood. In this study, we investigated the role of Pin1 in the aging of rat knee joint CSPCs. We isolated CSPCs from rat knee joints and demonstrated that, in long-term in vitro culture, Pin1 protein levels are significantly reduced. At the same time, expression of the senescence-related β-galactosidase and the senescence marker p16INK4A were markedly elevated. In addition, Pin1 overexpression reversed the progression of cellular senescence, as evidenced by the down-regulation of senescence-related β-galactosidase, increased EdU positive cells and diminished levels of p16INK4A. In contrast, Pin1 siRNA incorporation promoted CSPCs senescence. In addition, we also observed the distribution of cell cycles through flow cytometry and revealed that Pin1 deficiency results in cell cycle arrest in the G1 phase, suggesting severe lack of proliferation ability, a sign of cellular senescence. Collectively, these results validated that Pin1 is an essential regulator of CSPCs aging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call