Abstract

Cervical cancer metastasis is an important cause of death in cervical cancer. Previous studies have shown that epithelial-mesenchymal transition (EMT) of tumors promotes its invasive and metastatic capacity. Alterations in the extracellular matrix (ECM) and mechanical signaling are closely associated with cancer cell metastasis. However, it is unclear how matrix stiffness as an independent cue triggers EMT and promotes cervical cancer metastasis. Using collagen-coated polyacrylamide hydrogel models and animal models, we investigated the effect of matrix stiffness on EMT and metastasis in cervical cancer. Our data showed that high matrix stiffness promotes EMT and migration of cervical cancer hela cell lines in vitro and in vivo. Notably, we found that matrix stiffness regulates yes-associated protein (YAP) activity via PPIase non-mitotic a-interaction 1 (Pin1) with a non-Hippo mechanism. These data indicate that matrix stiffness of the tumor microenvironment positively regulates EMT in cervical cancer through the Pin1/YAP pathway, and this study deepens our understanding of cervical cancer biomechanics and may provide new ideas for the treatment of cervical cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.