Abstract

Pin-supported (PS) walls represent a possible solution for the seismic retrofit of existing reinforced concrete (RC) buildings, enabling linearization of the frame deformation along its height and consequently inhibiting soft storey collapse mechanisms. The effectiveness of this rehabilitation technology is strongly related to the characteristics of the existing frames, especially to the vertical distribution of the frame storey lateral stiffness. Since a larger 1st storey lateral stiffness may lead to a detrimental structural response of the retrofitted system, an alternative solution obtained from removing the connecting link between the 1st floor of the existing building and the pin-supported wall is investigated in this paper. An analytical method is proposed to derive the distribution of the internal actions in a dual 2D RC frame-PS wall system without the link at the 1st floor level, considering both a linear and nonlinear behaviour of the frame. It emerges that some parameters describing the structure type can provide straightforward information on the suitability of this solution in the seismic retrofit of existing RC buildings. As a result, a simplified procedure has been derived to preliminarily define the retrofit system configuration and evaluate the maximum demand in the PS wall. Such a procedure is finally applied with reference to a frame representing a RC building and finite element model analyses are carried out for validation purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call