Abstract

Many aspects of development in the model plant Arabidopsis thaliana involve regulated distribution of the hormone auxin by the PIN-FORMED (PIN) family of auxin efflux carriers. The role of PIN-mediated auxin transport in other plants is not well understood, but studies in a wider range of species have begun to illuminate developmental mechanisms across land plants. In this review, I discuss recent progress in understanding the evolution of PIN-mediated auxin transport, and its role in development across the green plant lineage. I also discuss the idea that changes in auxin biology led to morphological novelty in plant development: currently available evidence suggests major innovations in auxin transport are rare and not associated with the evolution of new developmental mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.