Abstract

In this work, crystal growth and characterization of PIN–PMN–PT (29–59% PIN and 28–35% PT) were conducted to understand how PIN ratio in the PIN–PMN–PT system impacts its phase stability during crystallization. High-quality PIN–PMN–PT crystals with 36% PIN were obtained using the self-seeded Bridgman process, even though the cubic phase In 2 O 3 formed at the very beginning of solidification. The melt became more unstable when the PIN ratio in the PIN–PMN–PT system increased to 49% and above, which affected the composition and quality of the as-grown crystals significantly. By increasing the PIN to 36% in PIN–PMN–PT crystal, the rhombohedral-to-tetragonal phase transition temperatures and the coercive field reached 115–135°C and 4.5~5.6 kV/cm, respectively, that greatly expanded the operation domains compared to PMN–PT crystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.