Abstract

In this paper, pilot-assisted transmission over time-selective flat fading channels is studied. It is assumed that noncausal and causal Wiener filters are employed at the receiver to perform channel estimation with the aid of training symbols sent periodically by the transmitter. For both filters, the variances of estimate errors are obtained from the Doppler power spectrum of the channel. Subsequently, achievable rate expressions are provided. The training period, and data and training power allocations are jointly optimized by maximizing the achievable rate expressions. Numerical results are obtained by modeling the fading as a Gauss-Markov process. The achievable rates of causal and noncausal filtering approaches are compared. For the particular ranges of parameters considered in the paper, the performance loss incurred by using a causal filter as opposed to a noncausal filter is shown to be small. The impact of aliasing that occurs in the undersampled version of the channel Doppler spectrum due to fast fading is analyzed. Finally, energy-per-bit requirements are investigated in the presence of noncausal and causal Wiener filters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.