Abstract

Abstract The experiment of improving Selective Non-Catalytic Reduction (SNCR) denitrification efficiency with gas additives (CH4 and C3H8) was carried out in the 50 kW circulating fluidized bed (CFB) pilot-scale equipment. The results show that the denitrification efficiency can reach 20 % when the reaction temperature is 650 °C, and the optimum mole ratio of C3H8/NH3 is 0.5. The denitrification efficiency can exceed 50 % when the mole ratio of C3H8/NH3 is 0.4 and the reaction temperature is 720 °C. However, the CH4 additive does not promote denitrification at this temperature. When the reaction temperature is 760 °C, the optimum denitrification efficiency of CH4 is 60 %, and the required CH4/NH3 is 0.8. Once the amount of CH4 exceeds the optimal value, the denitrification efficiency is suppressed. In addition, the concentrations of N2O and CO in the gas increase significantly with an increase of gas additives. Due to the incomplete oxidation of C3H8, a large amount of C2H4 is produced in the low-temperature region (< 750 °C) of SNCR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.