Abstract

Previous participants from a multi-year blended learning intervention focusing on science, technology, engineering and mathematics (STEM) content knowledge, technical, college, and career preparatory skills were recruited to pilot a new module designed by the project staff. Participants met for a total of 22 contact hours receiving lectures from staff and two guest speakers from industries relevant to photonics, fiber optics hands-on experimentation, and practice with documenting progress. Activities included constructing a fiber optics communication system, troubleshooting breadboard circuits and diagrammed circuits as well as hypothesis testing to discover various aspects of fiber optic cables. Participants documented their activities, wrote reflections on the content and learning endeavor and gave talks about their research experiences to staff, peers, and relatives during the last session. Overall, it was found that a significant gain in content knowledge occurred between the time of pre-testing (Mean=0.54) and post-testing time points for the fiber optics portion of the curriculum via the use of a paired samples t-test (Mean=0.71), t=-2.72, p<.05. Additionally, the electronic theory test results were not a normal distribution and for this reason non-parametric testing was used, specifically a Wilcoxon signed-ranks test. Results indicated a significant increase in content knowledge occurred over time between the pre- (Mdn=0.35) and post-testing time points (Mdn=0.80) z=-2.49, p<,05, r=-0.59 for the electronic theory portion of the curriculum. An equivalent control group was recruited from the remaining participant pool, allowing for comparison between groups. The program design, findings, and lessons learned will be reported in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.