Abstract
Carbon dioxide laser resurfacing has recently come into favor for the treatment of photodamaged skin. While the clinical and histologic effects of high-energy short-pulse carbon dioxide lasers on human skin have been investigated, the ultrastructural effects of these lasers have not been documented. Our objective was to study the ultrastructural effects of a high-energy pulsed carbon dioxide laser on photodamaged human skin. Before laser surgery, the ultrastructural changes characteristic of photodamaged skin were evident. Immediately after treatment, there was extensive coagulation necrosis of the epidermis and papillary dermis. Thirty days after treatment, there was no evidence of intercellular or intracellular edema, and ordered differentiation of the epidermal keratinocytes, with a loss of keratinocyte dysplasia, was seen. Increased numbers of desmosomes and tonofibrils were noted. New deposition of collagen was present in the papillary dermis. The ultrastructural findings seen at 90 days after treatment were similar to those seen at 30 days, apart from increased organization of collagen fibers in the papillary dermis. Treatment with the high-energy pulsed carbon dioxide laser appears to reverse the epidermal and dermal changes of photoaging on an ultrastructural level. These changes appear morphologically to be consistent with previously described clinical and histologic changes following laser resurfacing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.