Abstract

The Southern Plateau subantarctic region, southeast of New Zealand, is an important feeding area for birds, seals and fish, and a fishing ground for commercially significant species. The Southern Plateau is a major morphometric feature, covering approximately 433,620 km 2 with average depth of 615 m. The region is noted for its relatively low levels of phytoplankton biomass and primary production that is iron-limited. In order to evaluate the implications of these attributes for the functioning of this ecosystem a steady-state, 19-compartment model was constructed using Ecopath with Ecosim software of Christensen et al. [ www.ecopath.org]. The system is driven by primary production that is primarily governed by the supply of iron and light. The total system biomass of 6.28 g C m −2 is very low compared with systems so far modelled with a total system throughput of 1136 g C m −2 year −1. In the model, the Southern Plateau retains 69% of the biomass in the pelagic system and 99% of total production. Although fish are caught demersally, most of their food is part of production in the pelagic system. Top predators represent about 0.3% of total biomass and account for about 0.24 g C m −2 year −1 of food consumed made up of birds 0.058 g C m −2 year −1, seals 0.041 g C m −2 year −1, and toothed 0.094 g C m −2 year −1 and baleen whales 0.051 g C m −2 year −1. This amounts to 105,803 tonnes carbon over the whole of the Southern Plateau and is about 17% of the total amount of food eaten by non-mesopelagic fish. Mean transfer efficiencies between trophic levels II and IV of 23% are at the high end of the range reported in the literature. In the model, adult fish production is almost completely accounted for by the fisheries take (32%), consumption by seals (7%), toothed whales (21%), other adult fish (13%), and squid (20%). Fish and squid catches are at the trophic levels of 4.8 and 5.0, respectively. The gross efficiency of the fishery is 0.018% (catch/primary production). Although not all data come from direct knowledge of this system, the model reflects its general characteristics, namely a low primary production system dominated by the microbial loop, low sedimentation to the seafloor, high transfer efficiencies, a long food web and supporting high-level predators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call