Abstract

Abstract Using a 1-MWe slipstream pilot plant, solid-sorbent-based post-combustion CO2 capture was tested at a coal-fired power plant. Results from pilot testing were used to develop a preliminary full-scale commercial design. The sorbent selected for pilot-scale evaluation during this project consisted of an ion-exchange resin that incorporated amines covalently bonded to the substrate. A unique temperature-swing-absorption (TSA) process was developed that incorporated a three-stage fluidized-bed adsorber integrated with a single-stage fluidized-bed regenerator. Overall, following start-up and commissioning challenges that are often associated with first-of-a-kind pilots, the pilot plant operated as designed and expected, with a few key exceptions. The two primary exceptions were associated with: (i) handling characteristics of the sorbent, which were sufficiently different at operating temperature than at ambient temperature when design specifications were established with lab-scale testing; and (ii) CO2 adsorption in the transport line between the regenerator and adsorber that preloaded the sorbent with CO2 prior to entering the adsorber. Results from the pilot programme demonstrate that solid-sorbent-based post-combustion capture can be utilized to achieve 90% CO2 capture from coal-fired power plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.