Abstract

BackgroundHypoxic and hypobaric conditions may augment the beneficial influence of training on cardiovascular risk factors. This pilot study aimed to explore for effects of a two-week hiking vacation at moderate versus low altitude on adipokines and parameters of carbohydrate and lipid metabolism in patients with metabolic syndrome.MethodsFourteen subjects (mean age: 55.8 years, range: 39 – 69) with metabolic syndrome participated in a 2-week structured training program (3 hours of guided daily hiking 4 times a week, training intensity at 55-65% of individual maximal heart rate; total training time, 24 hours). Participants were divided for residence and training into two groups, one at moderate altitude (1,900 m; n = 8), and the other at low altitude (300 m; n = 6). Anthropometric, cardiovascular and metabolic parameters were measured before and after the training period.ResultsIn study participants, training overall reduced circulating levels of total cholesterol (p = 0.024), low-density lipoprotein cholesterol (p = 0.025) and adiponectin (p < 0.001). In the group training at moderate altitude (n = 8), lowering effects on circulating levels were significant not only for total cholesterol, low-density-lipoprotein cholesterol and adiponectin (all, p < 0.05) but also for triglycerides (p = 0.025) and leptin (p = 0.015), whereas in the low altitude group (n = 6), none of the lipid parameters was significantly changed (each p > 0.05). Hiking-induced relative changes of triglyceride levels were positively associated with reductions in leptin levels (p = 0.006). As compared to 300 m altitude, training at 1,900 m showed borderline significant differences in the pre-post mean reduction rates of triglyceride (p = 0.050) and leptin levels (p = 0.093).ConclusionsPreliminary data on patients with metabolic syndrome suggest that a 2-week hiking vacation at moderate altitude may be more beneficial for adipokines and parameters of lipid metabolism than training at low altitude. In order to draw firm conclusions regarding better corrections of dyslipidemia and metabolic syndrome by physical exercise under mild hypobaric and hypoxic conditions, a sufficiently powered randomized clinical trial appears warranted.Trial registrationClinicalTrials.gov ID NCT02013947 (first received November 6, 2013).

Highlights

  • Hypoxic and hypobaric conditions may augment the beneficial influence of training on cardiovascular risk factors

  • Risk factors for cardiovascular disease and diabetes mellitus include abdominal adiposity, insulin resistance, impaired glucose tolerance, and arterial hypertension, which are often associated with elevations in fasting triglycerides (TG) and glucose in addition to elevated lowdensity-lipoprotein cholesterol (LDL-C) and decreased high-density lipoprotein cholesterol (HDL-C) levels [1,2]

  • Pre-post pairwise comparisons revealed that mean systolic blood pressure at rest and maximum systolic blood pressure in ergometry were reduced by training at low altitude (p = 0.040 and p = 0.036, respectively) but not at moderate altitude (p = 0.424 and 0.792, respectively)

Read more

Summary

Introduction

Hypoxic and hypobaric conditions may augment the beneficial influence of training on cardiovascular risk factors. Risk factors for cardiovascular disease and diabetes mellitus include abdominal adiposity, insulin resistance, impaired glucose tolerance, and arterial hypertension, which are often associated with elevations in fasting triglycerides (TG) and glucose in addition to elevated lowdensity-lipoprotein cholesterol (LDL-C) and decreased high-density lipoprotein cholesterol (HDL-C) levels [1,2]. This clustering of risk factors is termed the “metabolic syndrome” (MetS) [3]. Through inflammatory and pro-atherogenic properties, leptin provides a functional link between obesity and cardiovascular disease [15,16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call