Abstract
Earlier diagnosis and longitudinal monitoring of diffuse low-grade gliomas (DLGG) increase overall survival by maximizing surgery efficacy and optimizing time for an adjuvant treatment when resection is incomplete. Presently, only imaging permits the non-invasive detection and monitoring of DLGG, but it lacks sensitivity. Measure of circulating microRNAs levels could represent a non-invasive alternative. We hypothesized that slow-growing DLGG induce overtime a systemic reaction impacting blood cells microRNA profiles, while the intact blood-brain barrier restricts the passage of tumor microRNAs into bloodstream. In 15 DLGG patients and 15 healthy controls, expression levels of 758 microRNAs were measured by the TaqMan OpenArray RT-qPCR platform, on preoperative whole blood, containing both cell-free and blood cells microRNAs. Normalized data were computed by a Student t test with a p value threshold allowing a 10% rate of false positive. Statistical analysis retained fifteen microRNAs, all overexpressed in patients. MiR-20a, miR-106a, miR-20b, and miR-93 belong to clusters genetically related. As miR-223 and miR-let7e, they target the transcription factor STAT3. MicroRNA expression levels were not correlated to preoperative tumor volume. A signature composed of miR-93, miR-590-3p, and miR-454 enabled to nearly perfectly separate patients from controls. Our study performed on a homogeneous cohort was designed accordingly to DLGG particularities and provided the first microRNAs signature proposal. Functional convergence on STAT3 and overexpression of miR-223, factors respectively involved in myeloid-derived suppressor cells and granulocytes, argued for a systemic peripheral response. Overexpressed microRNAs and tumor volume were uncorrelated, making a tumor origin elusive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.